MARINE MACROBENTHIC ALGAE OF TAWI-TAWI, PHILIPPINES: SPECIES COMPOSITION, DISTRIBUTION, DIVERSITY AND ABUNDANCE

A Thesis Presented to The Graduate Faculty of the Department of Biology College of Arts and Sciences, University of San Carlos Cebu City, Philippines

In Partial Fulfilment of the Requirements for the Degree MASTER OF SCIENCE IN MARINE BIOLOGY

ROSALINDA M. PUIG-SHARIFF

FEBRUARY 2015

APPROVAL SHEET

This thesis entitled "MARINE MACROBENTHIC ALGAE OF TAWI-TAWI, PHILIPPINES: SPECIES COMPOSITION, DISTRIBUTION, DIVERSITY AND ABUNDANCE" prepared and submitted by ROSALINDA M. PUIG-SHARIFF in fulfilment of the requirements for the degree of MASTER OF SCIENCE IN MARINE BIOLOGY has been examined and is recommended for acceptance and approval for ORAL EXAMINATION.

THESIS COMMITTEE

PAUL JOHN L. GERALDINO, PhD ADVISER

FILIPINA B. SOTTO, PhD

DOMINIC FRANCO C. BELLEZA, MSci. Member

Member

ANTHONY S. ILANO, PhD

Committee Chair

PANEL OF EXAMINERS

Approved by the Committee on Oral Examination with a grade of **PASSED**

JULIE OTADOY, PhD

Department Chair

FILIPINA B. SOTTO, PhD

Member

DOMINIC FRANCO C. BELLEZA, MSc.

Member

ANTHONY S. ILANO, Ph.D.

Chair, Thesis Committee

PAUL JOHN L. GERALDINO, PhD Adviser

Accepted and approved in fulfilment of the requirements for the degree of MASTER OF SCIENCE IN MARINE BIOLOGY.

Comprehensive Examination PASSED: October 25-26, 2002

February 13, 2015 Date of Thesis Defense **DELIA E. BELLEZA, PhD**

Dean, College of Arts and Sciences

ACKNOWLEDGMENTS

It would have not been possible to write this Master's thesis without the grace of God giving me the strength and guidance from day to day from the start until the completion of this study. To Him, I give the highest praise and glory.

I am most grateful to Dr. Paul John L. Geraldino, my thesis adviser for his knowledge and whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject. His recommendations and suggestions have been invaluable for the completion of this work.

I also give my utmost gratitude to the rest of my thesis committee: Dr. Anthony S. Ilano, Dr. Filipina B. Sotto and Mr. Dominic Franco Belleza for their valuable inputs especially in the methodology and for the assistance they provided at all levels of the research. I doubt that I will ever be able to convey my appreciation fully, but I owe them my endless gratitude.

I would like to acknowledge the Mindanao State University –Tawi-Tawi Scholarship Program for the financial support and assistance from the start until the completion of my graduate degree and the Coral Triangle Support Partnership (CTSP) -University Mentoring Scholarship Assistance; particularly the World Wildlife Fund (WWF) for added financial support and for lending me some materials needed in this study.

I am most grateful to the USC Learning Resource Center for their assistance in my literature search. I am also truly thankful to my colleagues at the Mindanao State University-Tawi-Tawi; Dr. Jumelita B. Romero, Prof. Concepcion C. Toring and Prof. Tehane T. Aliaza for providing me with the necessary literatures needed in this study.

My Special thanks to Mr. Arjade Selim for assistance in my collections and to Antonio N. Ayop for helping me in my computations.

Finally, my utmost thanks to my husband, Bashir A. Shariff; and my daughters, Czarina Mari P. Shariff and Lovelle Joy P. Shariff for their unending support and understanding.

ABSTRACT

A study on Species composition, distribution, diversity and abundance of marine macrobenthic algae in Tawi-Tawi was carried out between November 2013 to September 2014 at the littoral zones of seven localities of Tawi-Tawi province, namely; Bongao, Sanga-Sanga, Sibutu, Simunul, Sitangkai, Tandubas and South Ubian A total of 79 species were identified which is distributed as follows; 35 species of Phylum Chlorophyta, 31 species of Phylum Rhodophyta and 13 species of Phylum Ochrophyta in all sites. Of these, 34 species are new records for the Tawi-Tawi marine macrobenthic algae composed of 10 species of chlorophytes, 9 species of ochrophytes and 15 species of rhodophytes. While there were 79 species identified in this study, this is less diverse compared to the report of Silva (1987) where 103 species were listed but this is 17 % more diverse than what Trono (1997) reported. There was also a difference in the species composition. About 60 % of the species, mostly red algae reported by Silva (1987), and 32 % by Trono (1997) were absent in this study. Jaccard Similarity Index shows that majority of species were not equally represented in each of the site. The most similar study sites were between Sanga-Sanga and Bongao. As to their distribution only nine (9) species were shared across all study sites namely: Boergesenia forbesii (Harvey) Feldmann, Boodlea composita (Harvey) Brand, Caulerpa sertularoides (S.G. Gmelin) Howe, Ulva clathrata (Roth) C.Agardh, Valonia ventricosa C. Agardh, Gracilaria coronopifolia J. Agardh, Gracilariopsis heteroclada (Zhang & Xia), Kappaphycus alvarezii (Doty) Doty, and Palisada perforata (Bory de Saint-Vincent. The relative abundance in terms of percent (%) cover of the macrobenthic algae in the seven (7) study sites of Tawi-Tawi varied among sites. The most widely distributed and relatively abundant species of marine macrobenthic algae during this study was Palisada perforata. It dominated in four out of seven sampling sites based on percent (%) cover. Generalized Linear Model (GLM) showed that out of seven sites only two had significant relationship between the mean percent cover and study sites. These two study sites were Sibutu (p=0.0311) and Simunul (p=0.0328).

TABLE OF CONTENTS

Page Number

TITLE PAGEi
APPROVAL SHEET ii
AKNOWLEDGEMENTSiii
ABSTRACTiv
TABLE OF CONTENTSv
LIST OF TABLES vii
LIST OF FIGURES
LIST OF APPENDICESxiii
CHAPTER I: INTRODUCTION1
Objectives of the Study
Significance of the Study4
Review of Related Literature
Scope and Limitations of the Study8
CHAPTER II: MATERIALS AND METHODS
A. Study Site 10
B. Collection, Sorting, and Preservation of Specimens16
C. Identification and Classification18
D. Determination Species Abundance 18
E. Determination of Salinity and Temperature

CHAPTER 111: RESULTS AND DISCUSSION

Species Composition and Distribution2
Taxonomy of Marine Macrobenthic Algae from Tawi-Tawi
Phylum Chlorophyta26
Phylum Ochrophyta6
Phylum Rhodophyta75
Diversity104
Abundance110
CHAPTER IV: CONCLUSIONS AND RECOMMENDATIONS116
LITERATURE CITED
APPENDICES
CURRICULUM VITAE

List of Tables

Table		Da an Na
No.	Title	Page No.
1	Indices of the degree of macroalgae cover (Saito and Atobe, 1970)	19
2	Species composition and distribution of marine macrobenthic algae in	21
	Tawi-Tawi, Philippines from November 2013 to September 2014.	
3	New records of marine macrobenthic algae and their distribution at Tawi-	25
	Tawi, Philippines.	
4	Shannon and Simpson diversity index of macrobenthic algae in seven	106
	study sites in Tawi-Tawi.	
5	Similarity indices of macrobenthic algae among study sites.	107
6	Average salinity (ppt) and temperature (°C) of the different study sites	110
	taken at different times between July 2014 to September 2014.	
7	Relative percent (%) cover per m2 of marine macrobenthic algae in	111
	seven study sites of Tawi-Tawi	

List of Figures

Figure	Title	Page
No.		No.
1	Map of Tawi-Tawi, Philippines with sampling sites designated by red	10
	numbers.	
2	Aerial view of Bongao Island. Tawi-Tawi, Philippines.	11
3	Portion of the intertidal area of Bongao, Tawi-Tawi.	11
4	Sanga-Sanga intertidal area with huge rocks at the upper portion.	12
5	Portion of intertidal zone in Sibutu with houses built along the upper	13
	intertidal area.	
6	Stilt houses built in the intertidal zone of Simunul, Tawi-Tawi, Philippines.	14
7	View of Sitangkai Island from a distance.	15
8	Stilt houses in Sitangkai built at the intertidal area.	15
9	Plant Press.	18
10	Herbarium sheet with plant specimen.	18
11	<i>Ulva clathrata</i> (Roth) C. Agardh, floating along with other algal species in intertidal area.	28
12	Ulva intestinalis Linnaeus, natural habit.	29
13	Ulva lactuca Linnaeus, habit.	30
14	Ulva reticulata Forsskål, on sandy substrate with Palisada perforata	31
	in shallow water of Sanga-Sanga, Bongao, Tawi-Tawi.	
15	Anadyomene plicata C.Agardh, habit.	32
16	Chaetomorpha crassa (C.Agardh) Kützing, on rocky substrate in	33
	shallow water of Bongao, Tawi- Tawi.	

17	Boergesenia forbesii (Harvey) Feldmann, attached to a solid substrate at	34
	lower intertidal zone.	
18	Boodlea composita (Harvey) F.Brand, growing with seagrass at	35
	lower intertidal area.	
19	Dictyosphaeria cavernosa (Forsskål) Børgesen.	36
20	Dictyosphaeria versluysii Weber-van Bosse, natural habit.	37
21	Valonia aegagropila C.Agardh, natural habit.	38
22	Valonia fastigiata Harvey ex J.Agardh, herbarium specimen.	39
23	Valonia ventricosa J.Agardh, natural habit.	40
24	Caulerpa lentillifera J.Agardh, habit (herbarium specimen).	41
25	Caulerpa chemnitzia (Esper) J.V.Lamououx, habit.	43
26	Caulerpa racemosa (Forsskål) J.Agardh, found in calm, relatively	44
	turbid waters on sandy to muddy substrate.	
27	Caulerpa serrulata (Forsskål) J.Agardh, on rocky substrate among	45
	other macrobenthic algae.	
28	Caulerpa sertularioides (S.G.Gmelin) M.A.Howe, habit.	46
29	Caulerpa cupressoides (Vahl) C.Agardh	47
30	Caulerpa sp. 1, a) natural habit, b) habit (herbarium specimen).	47
31	Codium bartlettii C.K.Tseng & W.J.Gilbert, habit.	48
32	Codium edule P.C.Silva, habit.	49
33	Halimeda discoidea Decaisne, a) habit, b) growing on reef edge exposed to	50
	strong water movement.	
34	Halimeda incrassata (J. Ellis) J. Lamouroux, habit (herbarium specimen)	51
35	Halimeda macroloba Decaisne	52
36	Halimeda macrophysa Askenasy, a) habit, b), in lower intertidal area	53

37	Halimeda opuntia (Linnaeus) J.V.Lamouroux, habit.	54
38	Halimeda simulans M.A.Howe, habit	55
39	Avrainvillea erecta (Berkeley) A.Gepp & E.S.Gepp, habit.	56
40	Chlorodesmis fastigiata (C.Agardh) S.C.Ducker, natural habit.	57
41	Tydemania expeditionis Weber-van Bosse, attached to rocks in lower	57
42	intertidal area. Bornetella oligospora Solms-Laubach, natural habit.	58
43	Bornetella sphaerica (Zanardini) Solms-Laubach, natural habit.	59
44	Halicoryne wrightii Harvey, growing in shallow intertidal area.	60
45	Acetabularia dentata Solms-Laubach, attached to rocks in shallow water	60
46	Dictyota mertensii (Martius) Kützing, a) herbarium specimen b) natural	62
	habit.	
47	Lobophora variegata (J.V.Lamouroux), a) herbarium specimen, b) natural	63
	habit	
48	Padina boryana Thivy, a)herbarium specimen, b) natural habit.	64
49	Padina australis Hauck, natural habit.	64
50	Colpomenia sinuosa (Mertens ex Roth) Derbès & Solier, herbarium	65
	specimen and natural habit.	
51	Hydroclathrus clathratus (C. Agardh) Howe, natural habit.	66
52	Hormophysa cuneiformis (J.F.Gmelin) P.C.Silva, natural habit.	68
53	Sargassum dotyi Trono, habit.	69
54	Sargassum ilicifolium (Turner) C.Agardh, habit.	70
55	Sargassum polycystum C.Agardh, habit.	71
56	Sargassum turbinarioides Grunow, natural habit	72
57	Turbinaria conoides (J.Agardh) Kützing, natural habit	73
58	Turbinaria ornate (Turner) J.Agardh, a) habit, b) in shallow intertidal area	74

59	Actinotrichia fragilis, attached to rock in intertidal area.	76
60	Galaxaura rugose J.V.Lamouroux, in shallow water attached to rock.	78
61	Gelidiella acerosa (Forsskål) Feldmann & G.Hamel, a)herbarium specimen,	79
	b) natural habit.	
62	Halymenia dilatata Zanardini,, a) herbarium specimen, b) natural habit.	80
63	Halymenia durvillei Bory de Saint-Vincent, natural habit.	81
64	Amphiroa fragilissima (Linnaeus) J.V.Lamouroux,, attached to rock in	82
	shallow water	
65	Mastophora rosea C.Agardh) Setchell,, forming purple clumps on rocks in	83
	wave-exposed areas.	
66	Portieria hornemannii (Lyngbye) P.C.Silva, habit	84
67	Titanophora weberae, natural habit.	85
68	Gracilaria coronopifolia, J.Agardh, a) habit, b) among seagrasses species	86
	in shallow intertidal area.	
69	Gracilaria gigas Harvey, habit	87
70	Gracilaria salicornia, (C.Agardh) E.Y.Dawson a) in calm water on sandy-	88
	corally substrate, b) cystocarpic plant.	
71	Gracilaria textorii (Suringar) De Toni, attached to rock on lower intertidal	89
	area.	
72	Gracilaria sp. 1, on sandy substrate in intertidal zone.	89
73	Gracilaria sp. 2, on sandy-corally substrate in upper intertidal area.	90
74	Gracilaria sp. 3, a) habit, b) in shallow intertidal area among seagrasses.	91
75	Gracilaria sp. 4, habit.	91
76	Gracilaria sp. 5, a) habit, b) cystocarpic plant attached to rock on lower	92
	intertidal area of Pahut, Bongao, Tawi-Tawi.	

77	Gracilariopsis heteroclada J.F.Zhang & B.M.Xia, (a) habit, (b) in clump.	93
78	Eucheuma denticulatum (N.L.Burman) F.S.Collins & Hervey, at lower	94
	intertidal zone.	
79	Kappaphycus alvarezii (Doty) Doty, a) cystocarpic plant, b) on sandy- coral	95
	substrate at the lower intertidal zone of Bongao.	
80	Hypnea cornuta (Kützing) J.Agardh, (a) habit,	97
	(b) portion of branch with stellate branchlet.	
81	Hypnea pannosa J.Agardh, habit.	97
82	Hypnea valentiae (Turner) Montagne, habit.	98
83	Hypnea sp. 1, natural habit	99
84	Acanthophora spicifera (M.Vahl) Børgesen, natural habit.	100
85	Laurencia cartilaginea Yamada, habit.	101
86	Laurencia sp. 1, habit.	101
87	Palisada perforata (Bory de Saint-Vincent) K.W. Nam,	102
	(a) natural habit, (b) portion of branch.	
88	Tolypiocladia glomerulata (C.Agardh) F.Schmitz, natural habit.	103
89	Rhodymenia sp., habit.	104
90	Number of species of marine macrobenthic algae in Tawi-Tawi in earlier	105
	reports.	
91	Total number of species of marine macrobenthic algae in Tawi-Tawi from	106
	November 2013 to September 2014.	

Appendices

Title

No.

Α	Marine macrobenthic algae found in Tawi-Tawi	123
B	Glossary of Technical Terms	133